skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sullivan, Blair D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Autonomous robotic inspection, where a robot moves through its environment and inspects points of interest, has applications in industrial settings, structural health monitoring, and medicine. Planning the paths for a robot to safely and efficiently perform such an inspection is an extremely difficult algorithmic challenge. In this work we consider an abstraction of the inspection planning problem which we term Graph Inspection. We give two exact algorithms for this problem, using dynamic programming and integer linear programming. We analyze the performance of these methods, and present multiple approaches to achieve scalability. We demonstrate significant improvement both in path weight and inspection coverage over a state-of-the-art approach on two robotics tasks in simulation, a bridge inspection task by a UAV and a surgical inspection task using a medical robot. 
    more » « less
  2. In social networks, a node’s position is, in and of itself, a form of social capital. Better-positioned members not only benefit from (faster) access to diverse information, but innately have more potential influence on information spread. Structural biases often arise from network formation, and can lead to significant disparities in information access based on position. Further, processes such as link recommendation can exacerbate this inequality by relying on network structure to augment connectivity. In this paper, we argue that one can understand and quantify this social capital through the lens of information flow in the network. In contrast to prior work, we consider the setting where all nodes may be sources of distinct information, and a node’s (dis)advantage takes into account its ability to access all information available on the network, not just that from a single source. We introduce three new measures of advantage (broadcast, influence, and control), which are quantified in terms of position in the network using access signatures – vectors that represent a node’s ability to share information with each other node in the network. We then consider the problem of improving equity by making interventions to increase the access of the least-advantaged nodes. Since all nodes are already sources of information in our model, we argue that edge augmentation is most appropriate for mitigating bias in the network structure, and frame a budgeted intervention problem for maximizing broadcast (minimum pairwise access) over the network. Finally, we propose heuristic strategies for selecting edge augmentations and empirically evaluate their performance on a corpus of real-world social networks. We demonstrate that a small number of interventions can not only significantly increase the broadcast measure of access for the least-advantaged nodes (over 5 times more than random), but also simultaneously improve the minimum influence. Additional analysis shows that edge augmentations targeted at improving minimum pairwise access can also dramatically shrink the gap in advantage between nodes (over ) and reduce disparities between their access signatures. 
    more » « less